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Abstract

We describe an implicit finite-difference scheme for solving the Vlasov–Fokker–Planck equation and Maxwell�s
equations in 2 spatial dimensions including, for the first time, self-consistent magnetic fields. These equations model the

coupled phenomena of magnetic field generation and magnetised electron transport in collisional plasmas, such as laser-

produced plasmas, in the non-relativistic limit. The kinetic description of the plasma enables the scheme to properly

describe these phenomena in the regime where the temperature and density scale lengths become comparable to the

transport mean-free-path. In addition to including the self-consistent magnetic field, other improvements over previous

Fokker–Planck codes have been made which result in a robust scheme that can work with a large time step. The scheme

employs Cartesian geometry and solves for the electromagnetic field components Ex, Ey and Bz. Extension to all field

components and cylindrical geometry is possible.
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1. Introduction

Energy transport [1,2] is an important process in plasma physics which impacts on many areas including,

laser–plasmas, astrophysical plasmas, magnetic confinement fusion and Z-pinches. Magnetic field gener-

ation in plasmas [3–5] is another important phenomenon that is particularly relevant to laser–plasmas and

astrophysical plasmas. This paper concerns modelling of these processes in the area of laser–plasma in-

teractions, particularly in the contexts of the interaction of intense, short laser pulses with solid targets [6]

and inertial fusion energy [7] (which uses laser or particle beams to compress and heat plasma to achieve

fusion). Intense laser–solid interaction looks like a promising source of high energy, low emittance proton
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and ion beams, as well as high energy photons and neutrons [6]. Successful development of inertial fusion

energy (IFE) power generation schemes and laser–plasma-based sources of energetic particles requires a

proper understanding of energy transport including the effect of magnetic fields. To do this, the electron

Vlasov–Fokker–Planck equation and Maxwell�s equations need to be solved. Strong magnetic fields can

severely affect energy transport [1] while heating plasma can result in the production of magnetic field [5,8].

For example, non-parallel electron density and temperature (or pressure) gradients act as a source of B-

fields [4]; otB / �rne �rTe. In IFE this source can generate magnetic fields reaching �1 MG [9] which is

strong enough to inhibit thermal transport. As mentioned above energy transport and magnetic field
generation are relevant elsewhere in plasma physics. For instance, the same B-field generation mechanism

(as above) is also considered to be a candidate for the 10�21–10�17 G strength primordial, cosmic, seed B-

field that has subsequently been amplified (by a dynamo mechanism) to produce the lG strength magnetic

field observed in galaxies [10]. In this context, it is known as the Biermann battery [3]. Therefore, the scheme

described here may be relevant to other areas of plasma physics too.

Formulation of a model that can properly and accurately describe electron transport and magnetic field

generation under realistic laser–plasma conditions is a challenging task. This stems from the need to self-

consistently treat electrons with a range of collisionalities. Because the mean-free-path of an individual
electron scales as kmfp / v4 the motion of slow electrons is dominated by collisions. Conversely, fast elec-

trons are collisionless so that their motion is governed by electric fields which decelerate them and magnetic

fields which deflect their trajectories into curved orbits with a radius of curvature of rg ¼ mev=eB. Crucially,
the fields that deflect the fast, collisionless electrons are strongly affected by collisions [11,12]. A return

current of cold, collisional electrons jc must be drawn to approximately balance the current of fast electrons

jf with r � jc ¼ �r � jf so that quasineutrality is maintained. It is the resistivity a of the cold electrons that

determines the electric field E � ajc and the degree to which the currents balance that determines the

magnetic field, r� B ¼ loðjc þ jfÞ. When there are a significant number of energetic electrons possessing
long mean-free-paths that exceed the characteristic lengths LT and Ln over which the plasma temperature

and density vary the plasma becomes non-local because its evolution at a given point depends intimately on

the condition of plasma far away. Previously the Vlasov–Fokker–Planck (VFP) equation has been solved

numerically ignoring magnetic fields in 1-D (1 spatial dimension) [13,14] and 2-D [15,16] to address heat-

flow down steep temperature gradients in unmagnetised plasma. Under these conditions the classical, fluid

description of transport [1,2], which makes the local approximation, breaks down. They found that non-

local effects are responsible for thermal transport inhibition [13] and reduced lateral thermal smoothing

[15]. A 1-D code has previously been written to solve the VFP and Maxwell�s equations including magnetic
fields [17], but it cannot describe magnetic field generation by thermal sources or how B-fields affect heating

uniformity being 1-dimensional.

Until now, there has not been a fully kinetic 2-D model of electron transport with magnetic fields and B-

field generation that adequately treats the whole range of electron collisionality present under realistic

conditions. Previous 2-D models that include B-fields have fallen into three categories; (1) fluid codes, (2)

PIC or Vlasov codes, and (3) hybrid codes. Fluid codes [9,18–20] cannot describe non-local effects because

they utilise classical, transport theory, e.g. [1]. Strictly they are only valid for highly collisional plasmas

where k � Ln;LT , where the k is the average electron collisional mean-free-path and Ln ¼ n=jrnj,
LT ¼ T =jrT j. Particle-in-cell (PIC) codes [21,22] and Vlasov codes [23] are fully kinetic and are ideally

suited to collisionless plasmas. Typically PIC codes tend to use explicit methods and consequently require a

time step small enough to resolve the fastest frequency present in the problem. They also suffer from the so

called �finite grid instability� [22] whereby the plasma numerically heats up until the electron debye length is

resolved by the grid. These limitations mean that multidimensional, explicit, PIC cannot readily simulate

the low temperature, high density plasma created in laser–solid interactions. PIC codes utilising implicit

methods do exist [24]. Implicitness greatly relaxes the time step constraint and mitigates the effects of the

finite grid instability, so that lower temperatures and higher densities can be dealt with. One spatial
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dimension PIC codes with electron–ion collisions have successfully been applied to fast electron transport

through solid density plasma [12]. Two spatial dimension PIC codes with electron collisions also exist, both

explicit [25] and implicit [26]. Explicit 2-D PIC is unable to access conditions where collisions dominate for

the bulk of the electrons, though. Even though implicit methods overcome this particular problem, the PIC

method in general struggles to adequately resolve the distribution function in a given cell when a realistic

sized, 2-D problem is addressed. Statistical noise and under resolution of the electron distribution lead to an

inaccurate treatment of collisions and can overwhelm real physical effects present. Hybrid models [27–30]

have emerged which could be considered a cross between PIC and fluid codes. They treat high energy
electrons kinetically while the bulk of the electrons which make up the background through which the

energetic particles travel are simply described as a resistive fixed medium or fluid. They have been used to

investigate resistive inhibition of hot electron penetration through �gold foam� (electron density of

ne ¼ 1:3� 1021 cm�3) in 1-D [27] and the propagation of laser-generated energetic electrons beams through

tens of microns of solid density plasma due to magnetic collimation in 2-D [29]. Enhanced fluid models with

separate fluids for hot and cold electrons [31,32] or a convolution treatment of transport fluxes (without

magnetic fields) [33] exist which provide a partial description of non-local transport. But neither hybrid

codes nor enhanced fluid models are fully kinetic. We note that many numerical schemes also exist [34–37]
which solve the Fokker–Planck equation alone without the Vlasov equation or Maxwell�s equations and
only consider the velocity dimensions of phase space. While these schemes accurately and efficiently de-

scribe relaxation and thermalisation of particles in a spatially uniform system, they are not able to model

transport (or B-field generation) since they ignore all spatial dimensions and the electric field.

Here, we described the first 2-D VFP code to self-consistently include magnetic fields. Consequently this

code has the unique capability of being able to model magnetic field generation and electron transport in

the presence of magnetic fields, fully kinetically and with an accurate treatment of collisions. It can

therefore access experimentally relevant regimes where existing models and codes are not valid or not well
suited. The code is called IMPACT which stands for �Implicit Magnetised Plasma and Collisional Trans-

port�. As well as being the first 2-D VFP code to self-consistently include magnetic fields IMPACT in-

corporates several other innovations. First, it treats the electric field implicitly as well as the electron

distribution function unlike previous VFP codes [13–17] which overcomes problems in maintaining

quasineutrality [16]. Second, it is the first 2-D VFP code to solve the full matrix equation that arises when

using implicit differencing. The benefit of this fully implicit approach is that it makes the code robust and

able to use large time steps well exceeding the characteristic collision time. The third innovation is retention

of electron inertia which can greatly reduce the computational effort needed to solve the implicit matrix
equation (see Section 5) as well as keeping physical effects which are normally discarded.

In comparison to other laser–plasma numerical schemes IMPACT is particularly suited to describing

non-local effects arising from collisional, thermal transport in the presence of steep temperature and

density gradients and magnetic fields. It also provides a good, non-local description of magnetized

transport in the non-relativistic background of electrons in the uniform, solid-density plasma scenario. In

both situations it is adept at modelling magnetic field generation by collisional and semi-collisional

mechanisms. Like previous 2-D VFP codes it currently uses the diffusive approximation (see Section 2.1)

which limits its ability to deal with strong anisotropy in the electron distribution. Therefore other
methods are better suited to modelling laser-absorption by collective, collisionless processes (i.e., PIC)

and transport of highly, collimated, beams of relativistic electrons through dense, uniform plasma

background (i.e., hybrid codes).

The rest of this paper proceeds as follows. In Section 2 the equations to be solved numerically are

given and explained. Section 3 covers the numerical scheme. Results from and descriptions of tests

carried out to verify the code are presented in Section 4. The implication of the test results, general

observations about the code and routes for improving it are discussed in Section 5. Finally, conclusions

are given in Section 6.
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2. The model and equations

In this section, we describe the system that is modelled, give the equations that need to be solved, state

the approximations used and discuss some important physical features and phenomena contained in the

model.

The goal is to calculate how the energy absorbed into a plasma from a short, intense, laser pulse is

transported away from the laser focus by the heated electrons in 2-D Cartesian geometry. The generation of

magnetic fields that is driven by the flow of energy away from the hot spot and the subsequent feedback of
these B-fields on the electron transport are also to be taken into account self-consistently. We assume the

plasma is stationary, the ions are cold (i.e., vti � vte, where vti and vte are the ion and electron thermal

speeds, respectively) and neglect hydrodynamic motion since we are interested in strong laser heating over

timescales short compared with either the hydro timescale or the thermalisation time between electrons and

ions. We also assume that the ionisation state of the plasma into which the absorption takes place does not

change in time, e.g., a fully ionised plasma. Though the ion density niðx; yÞ and Zðx; yÞ are time independent,

they need not be uniform so that density ramps and different materials can be modelled.

In order to properly model transport of absorbed energy away from the laser focus under intense heating
(where k � LT ; Ln is not valid) the full range of electron collisionality needs to be taken into account. We

therefore consider the electron Vlasov–Fokker–Planck equation

o

ot

�
þ v � rr �

e
me

ðEþ v� BÞ � rv

�
f ðv; r; tÞ ¼ �rv � f ðv; r; tÞhDvif g þ 1

2
rvrv : f ðv; r; tÞhDvDvif g ð1Þ

together with Amp�ere�s and Faraday�s laws for a description of the magnetic field

r� B ¼ loj; ð2Þ
r� E ¼ � oB

ot
: ð3Þ

The left-hand side of (1) is the Vlasov equation which on its own would describe the collisionless evo-

lution of f ðv; r; tÞ the electron, one-particle distribution function in the presence of the macroscopic electric
and magnetic fields E and B and spatial gradients in the electron density, temperature, pressure, etc. The

effect of both electron–electron (e–e) and electron–ion (e–i) collisions on the evolution of f is represented by

the Fokker–Planck collision operator on the right-hand side. hDvi is the average velocity deflection due to

multiple, simultaneous, small angle Coulomb collisions for an ensemble of electrons moving with velocity v

and is known as the coefficient of dynamical friction. Similarly hDvDvi is known as the coefficient of dy-

namical diffusion since it describes how collisions tend to spread out the range of velocities of an ensemble

of electrons initially all moving at velocity v. Both hDvi and hDvDvi vary with position r and time t. The
reason for neglecting the displacement current ð1=c2ÞoE=ot (where c is the speed of light in vacuum) on the
right-hand side of Eq. (2) will be explained below.
2.1. Cartesian tensor expansion

Rather than directly dealing with the full distribution f ðvx; vy ; vz; x; y; tÞ we use a reduced velocity de-

scription

f ðv; x; y; tÞ � f0ðv; x; y; tÞ þ f1ðv; x; y; tÞ � v̂: ð4Þ

This is known as the diffusion approximation. This approach reduces the phase space for the distribution
from five dimensions (that is three velocity dimensions vx; vy ; vz and two configuration space dimensions x; y)
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to three dimensions (jvj; x; y) but splits the distribution into three parts f0, fx, and fy . We take fz ¼ 0 here

(see Section 2.3). This reduction enables solution of the Vlasov–Fokker–Planck via a finite difference (FD)

scheme. The FD approach permits a more accurate treatment of collisions than would be afforded by a

particle-based scheme, the other main method of solving Eq. (1), which would be prone to statistical noise

and would struggle to adequately resolve the distribution. Classical transport theory makes the local ap-

proximation whereby f0 the isotropic part of the distribution is assumed to be Maxwellian and has the form

fM ¼ ne=ð2pkBTe=meÞ3=2 expð�mev2=2kBTeÞ. Setting f0 ¼ fM reduces the Vlasov–Fokker–Planck equation to

the well-known electron fluid equations for mass and energy continuity plus equations for mass flux
(momentum) and energy flux (heat flow). The momentum equation is often referred to as the generalised

Ohm�s law. No such restriction is made here so the kinetic equations for the evolution of the reduced

distribution (Eq. (10) and (11) below) must be solved. Eq. (4) is obtained by decomposing the distribution

function into a Cartesian tensor series in velocity [38]

f ðv; r; tÞ ¼
X
p

fpðv; r; tÞ :p ðv̂Þ
p ¼ þf0ðv; r; tÞ þ f1ðv; r; tÞ � v̂þ f2ðv; r; tÞ : v̂v̂þ � � � ð5Þ

retaining only the leading 2 terms. This expansion is similar, but not identical, to a spherical harmonic

expansion in the velocity space angles h and /. In (5) fpðv; r; tÞ is a pth-order tensor that is a function of

speed v only and v̂ ¼ ẑ cos hþ x̂ sin h cos/þ ŷ sin h sin/ is the velocity unit vector. The components of the

tensors ðv̂Þp ¼ Ppv̂ serve as the set of orthogonal, angular, basis functions. Finally, :p represents tensor

contraction over p indices. The justification for truncating after f1 is that e–i collisions act to isotropise

�angular detail� in the electron velocity distribution (generated by temperature and density gradients, etc.)
thus the following ordering f0 > jf1j > jf2j > � � � is expected to hold if LT ; Ln > k. In practice it is found that

the f � f0 þ f1 approximation accurately yields physical, transport quantities like heat flow and electric

current even when f0 � jf1j [14]. The isotropic part of the distribution f0 defines the electron number density

and the energy density, ne and Ue, respectively, in the following way:

neðx; y; tÞ ¼ 4p
Z 1

0

f0ðv; x; y; tÞv2 dv; ð6Þ
Ueðx; y; tÞ ¼ 4p
Z 1

0

1

2
mev2f0ðv; x; y; tÞv2 dv; ð7Þ

where Ue ¼ 3
2
nekBTe ¼ 3

2
Pe and Pe is the isotropic electron pressure. Similarly f1 defines the transport fluxes;

the electron current density and total heat flow vector, j and qT, respectively, as follows:

jðx; y; tÞ ¼ � 4pe
3

Z 1

0

f1ðv; x; y; tÞv3 dv; ð8Þ
qTðx; y; tÞ ¼
4p
3

Z 1

0

1

2
mev2f1ðv; x; y; tÞv3 dv: ð9Þ

By inserting the expanded form of f into the VFP equation, multiplying by ðv̂Þp and integrating over the
velocity angles h and / a set of coupled equations for the evolution of the fp can be obtained [39]. The first

two of these are,

of0
ot

þ v
3
r � f1 �

e=me

3v2
o

ov
v2E � f1
� �

¼ m0ee
v2

o

ov
Cðf0Þf0

�
þ Dðf0Þ

of0
ov

�
; ð10Þ
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of1

ot
þ vrf0 �

eE
me

of0
ov

� e
me

ðB� f1Þ þ gðf2Þ ¼ �meif1 þ Cee1ðf0; f1Þ; ð11Þ

where mei ¼ YZ2ni lnKei=v3 is the e–i angular scattering frequency, m0ee ¼ Y lnKee and Y ¼ 4pðe2=4p�0meÞ2.
lnKei and lnKee are the Coulomb logarithms for e–i and e–e scattering. The Rosenbluth coefficients Cðf0Þ
and Dðf0Þ will be given below. We ignore the e–e collision term Cee1 in the equation for otf1 which is known

as the Lorentz approximation and is valid for high Z. Using the diffusion approximation, i.e., fp ¼ 0 for

p > 1, means that the term

gðf2Þ ¼
2

5
vr � f2

�
� 2e
5mev3

o

ov
ðv3E � f2Þ

�
in Eq. (11) can be neglected and the equations for otf2, otf3, etc. need not be considered. By leaving out f2
effects due to electron viscosity and anisotropic electron pressure are neglected.

2.2. Normalisations

The scheme used involves normalising quantities with respect to characteristic values for a �reference
material� with electron temperature Te0, ion number density ni0, ionisation number Z0 and electron number

density ne0 ¼ Z0ni0. Thus in particular, velocity/speed is normalised to the electron thermal speed corre-

sponding to Te0 defined as vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe0=me

p
, time is normalised to the electron–ion 90� scattering time

sn ¼ v3n=ðYZ2
0ni0 ln kei0 for a thermal electron moving through the reference material and length is normalised

to the thermal, e–i mean-free-path which is kn ¼ vnsn. The full set of normalisations is

~v ¼ v
vn
; ~t ¼ t

sn
; ~x ¼ x

kn
;

~ov ¼ vnov; ~ot ¼ snot; ~r ¼ knr;

~fp ¼
fp

ne0v�3
n

; ~E ¼ eE=me

kns�2
n

; ~x ¼ eB=me

s�1
n

;

~Ue ¼
Ue

mev2nne0
; ~j ¼ j

ene0vn
; ~q ¼ q

mev3nne0
;

~ni ¼
ni
ni0

; ~Z ¼ Z
Z0

; ~ne ¼
ne
ne0

:

ð12Þ

All equations from now on will be written in terms of the quantities above hence tildes (�) will be dropped

for brevity. Any unnormalised equations/expressions will be pointed out. Where necessary, unnormalised
quantities (appearing in an otherwise normalised equation) will be denoted with a wide hat (e.g., cZ0 ).
2.3. Equation set

The full set of equations that needs to be solved in 2-D with magnetic fields and stationary ions using the

normalisations above is

of0
ot

þ v
3
r � f1 �

1

3v2
o

ov
v2E � f1
� �

¼ Cee0 þ H ; ð13Þ
of1

ot
þ vrf0 � E

of0
ov

� x� f1 ¼ � Z2ni
v3

f1; ð14Þ
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Cee0 ¼
1cZ0v2

o

ov
Cðf0Þf0

�
þ Dðf0Þ

of0
ov

�
; ð15Þ
Cðv; r; tÞ ¼ 4p
Z v

0

f0ðu; r; tÞu2 du; ð16Þ
Dðv; r; tÞ ¼ 4p
v

Z v

0

u2
Z 1

u
f0ðv0; r; tÞv0 dv0

� �
du; ð17Þ
r� xðr; tÞ ¼ 1

dc

� 	2

jþ 1

c

� 	2
oE

ot

" #
; ð18Þ
r� Eðr; tÞ ¼ � ox

ot
; ð19Þ
jðr; tÞ ¼ � 4p
3

Z 1

0

f1ðv; r; tÞv3 dv: ð20Þ
In configuration space, these equations are solved on a two-dimensional, rectangular, Cartesian domain.

All quantities can vary in the x- and y-directions but are invariant in the z-direction, i.e., r ¼ oxx̂þ oy ŷ. The

electric field and f1 vectors lie in the x; y-plane, i.e., E ¼ Exx̂þ Ey ŷ and f1 ¼ fxx̂þ fy ŷ, while the magnetic

field is oriented in the z-direction; B ¼ Bzðx; y; tÞẑ. Consequently the electric current and heat flow vectors,

which are velocity moments of f1, also lie in the x; y-plane. Using this configuration of fields and plasma

temperature and density gradients, transport across the magnetic field and magnetic-field generation by

thermal sources, e.g., otB / �rn�rT , can be addressed. In principle Bx and/or By could also be included
so long as care is taken that r � B ¼ 0 (which is trivially satisfied for the above configuration) continues to

hold and Ez and fz were included to. Arbitrary profiles can be specified for the electron number density

neðx; yÞ ¼ 4p
R1
0

f0v2 dv and ion number density niðx; yÞ but are time independent because the displacement

current and hydrodynamics are neglected. Similarly the ionisation state can vary in x and y but is fixed in

time because ionisation dynamics is not considered.

The following things should be pointed out about Eqs. (13)–(20):

• H in Eq. (13) is the laser heating term/operator. The form of this for inverse Bremsstrahlung heating is

given in [40].
• cZ0 in Eq. (15) is left unnormalised (otherwise it would be unity!).

• dc in Eq. (18) is the (normalised) collisionless skin depth and is given by ~dc ¼ ðc=xpeÞ=kn where

x2
pe ¼ ne0e2=me�0 is the electron plasma frequency.

• the speed of light c in Eq. (18) has been normalised.

• We ignore the logarithmic factors lnKeeðne; TeÞ= lnKei0 and lnKeiðZ; ne; TeÞ= lnKei0 that appear in the e–e

and e–i collision terms in the f0 and f1 equations, respectively, when they are normalised. The main de-

pendence of the collision frequencies on Z, n and Te appear through the factor Z2ni in (14) and through

(15) and the variation with the logarithmic factors is negligible in comparison.
The normalised magnetic field appearing in (14), (18), and (19) is closely related to the Hall parameter

xgs by xgs ¼ ð3
ffiffiffi
p

p
=4Þex~v3T=ð~Z2~ni lnKei= lnKei0Þ where xg ¼ eB=me is the electron gyro-frequency,

s ¼ ð3
ffiffiffi
p

p
=4Þsn~v3T=ð~Z2~ni lnKei= lnKei0Þ is the local, distribution averaged e–i collision time, and ~vT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=Te0

p
is the local, thermal velocity. Values of xgs � 1 imply that a typical electron only completes a fraction of a
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Larmor orbit before undergoing a large deflection due to Coulomb collisions thus the magnetic field hardly

affects transport. xgs � 1 signifies a high magnetisation.

We can safely neglect the displacement current in Amp�ere–Maxwell�s law (18) for the collisional and

semi-collisional phenomena (with characteristic length and timescales, L and t, satisfying k < L and s < t)
that IMPACT is designed to address if we limit ourselves to non-relativistic electron temperatures, i.e.,
~c2 > 1, and ensure that ~dc 6 1. (The last requirement can in fact be relaxed slightly since time derivative

terms are smaller than the other terms by a factor of approximately k=L). These two criteria together imply

that the electron plasma frequency exceeds the e–i collision frequency, so that over the resolvable time and
distance scales, electron plasma oscillations are easily able to respond and ensure that the plasma is

quasineutral with ne � Zni holding to good approximation. Effects arising from the displacement current

occur too rapidly and too locally to be resolved and can safely be neglected on the length and timescales of

interest. Appropriate ranges of Te0 and ne0 can easily be deduced from

~dc �
103Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne0=1021 cm�3

p
ln kei0

ðTe0=eVÞ2
: ð21Þ

At the low temperatures and/or high densities where ~dc � 1 the Fokker–Planck treatment of collisions breaks

down anyway because the plasma is no longer ideal (i.e., the condition kinetic energy density � potential

energy density ceases to be satisfied) with only a small the number of electrons present in the Debye sphere.
3. The numerical scheme

In this section, we describe the implicit, finite difference scheme used to solve Eqs. (13)–(20). This scheme

is conservative in terms of electron number density ne. The electric field, as well as f0 and f1, is treated

implicitly unlike in previous VFP codes [13–17]. This feature and the inclusion of magnetic field make the

alternating-direction-implicit (ADI) approach used to solve the finite difference equations (FDEs) in pre-

vious 2-D VFP codes [16] unfeasible here. The addition of B-field gives rise to mixed, spatial partial-de-

rivatives which cannot easily be dealt with by ADI. We therefore solve the full matrix equation that arises

from implicit differencing of E, f0, and f1. Implicit treatment of both the electric field and the electron

distribution function, plus solution of the full matrix equation makes the code robust and able to use large
time steps, i.e., Dt � see; sei. In contrast to previous 2-D VFP codes (without B-fields) [16] and 1-D VFP

codes with magnetic field [17], this scheme includes the electron inertia term which can dramatically reduce

the computational effort required to solve the matrix equation.

To begin with we describe how the equations are discretized in time, establishing which quantities in each

term are treated implicitly and discussing the iterative technique used to treat the nonlinear terms. This is

followed by the specification of the finite difference grid and the location of each quantity on the grid. We

then describe how each equation is differenced in the phase space (i.e., x; y; v) dimensions. The x and y
boundary conditions are then explained. Finally we explain how f1 is eliminated from the finite difference
version of the VFP equation, how the resulting VFP equation for f0 and Amp�ere�s law are combined into a

sparse matrix and how f0 and E are implicitly solved for from the sparse matrix equation.

3.1. Time discretisation

Eqs. (13)–(20) are differenced in time so that f0, f1 and E are treated implicitly while x is treated ex-

plicitly. The nonlinear terms in both the f0 and f1 Eqs. (13) and (14) are dealt with via the method of

successive approximations whereby only one of desired quantities in a nonlinear term is made implicit and

the other quantities are treated in the FD scheme as a lagged, nonlinear, coefficient. This nonlinear iteration

is continued until the solution converges. In the nonlinear Vlasov terms that contain both E and f0 (or f1),
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the electric field is chosen to be implicit while the electron distribution is treated as a lagged, nonlinear,

coefficient. This is different to previous VFP codes for electron transport in laser–plasmas which have either

treated these terms completely explicit [13] or chosen f to be implicit there [15–17]. The Vlasov parts of the

VFP equation thus look like,

f nþ1;lþ1
0 � f n

0

Dt
þ v
3
r � fnþ1;lþ1

1 � 1

3v2
o

ov
v2Enþ1 � fnþ1;l

1

� �
¼ ½Cee0 þ H �nþ1

; ð22Þ
fnþ1;lþ1
1 � fn1

Dt
þ vrf nþ1;lþ1

0 � Enþ1 of
nþ1;l
0

ov
� xn � fnþ1;lþ1

1 ¼ � Z2ni
v3

fnþ1;lþ1
1 ; ð23Þ

where index n denotes time, e.g., f nþ1
0 ¼ f0ðtnþ1Þ, and the index l indicates the nonlinear iteration number.

Notice that the otf1 term, representing electron inertial, is retained in (23). For the e–e Fokker–Planck

collision operator, Eq. (15), the Chang–Cooper scheme [41] is used. This differences f0 in the �drag� term and

ovf0 in the �diffusion� term implicitly while the Rosenbluth coefficients Cðf0Þ and Dðf0Þ (integral functions of
f0) are normally treated as lagged, nonlinear, coefficients. In cases where accuracy is not of prime im-

portance or the time step Dt � 1 we sometimes treat the Rosenbluth coefficients explicitly thus saving

computational effort. The e–e collision operator looks like

Cnþ1
ee0 ¼ 1cZ0v2

o

ov
Cðf0Þnþ1;lf nþ1;lþ1

0

�
þ Dðf0Þnþ1;l of

nþ1;lþ1
0

ov

�
: ð24Þ

Epperlein [42] has shown that linearisation of the e–e collision operator (followed by iteration) has some

advantages over the simpler method used here. It ensures that when Cee0 is appropriately differenced in v e–e
collisions exactly conserve energy even after only 1 nonlinear iteration rather than as l ! 1 as is the case

when using lagged nonlinear coefficients. Additionally the linearized method converges to the solution more

rapidly when large time steps are used (large means Dt is many e–e collision times). The disadvantage is that
Cðf0Þ and Dðf0Þ need to be treated implicitly which complicates the scheme and greatly increases the density

of the sparse matrix. Because self-consistent addition of a B-field to a 2-D VFP code and the implicit

treatment of E are already complex tasks which gives rise to a large sparse matrix and because it was not

known a priori how well a 2-D VFP code with B-field would work with very large Dt, the simpler nonlinear

iteration technique was chosen.

The VFP equation is solved implicitly for f0 and f1 and E at the new time tnþ1 using the following current

constraint to ensure that the updated distribution yields a current that is consistent with Amp�ere�s law

jnþ1;lþ1 ¼ � 4p
3

Z 1

0

fnþ1;lþ1
1 v3 dv ¼ d2cðr � xnÞ: ð25Þ

This current constraint together with the implicit treatment of E completely overcomes the problems in

maintaining quasineutrality [16] encountered with previous VFP codes. The last step in advancing the so-

lution to time tnþ1 is to update the magnetic field via Faraday�s law using the implicitly solved for electric field

r� Enþ1 ¼ � xnþ1 � xn

Dt

� 	
: ð26Þ

It should be noted that when starting a time step the nonlinear iteration is initiated with l ¼ 0 and that

f nþ1;0
0 ¼ f n

0 and fnþ1;0
1 ¼ fn1. Also note that Enþ1 does change as the nonlinear iteration proceeds even though

the �lþ 1� superscript has been omitted. In the rest of this paper, the nonlinear iteration index will be

omitted for brevity and the implicitly differenced occurrences of f0 and f1 will just use �nþ 1� while lagged,
nonlinear, matrix coefficients will use �n	� (rather than �nþ 1; l�).
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3.2. The grid and placement of quantities

The equations are differenced over a volume of the x; y; v phase space defined by xmin 6 x6 xmax,

ymin 6 y6 ymax and 06 v6 vmax. This computational domain is divided up into nx� ny � nv cells with nx
cells fitting across the grid in the x-direction, etc. This grid can be nonuniform, i.e., the cell widths can vary

across the domain in each direction. The nx cell widths in the x-direction are defined by Dxi for integer

i ¼ 1; . . . ; nx, and similarly the y and v cell widths are Dyj and Dvk, respectively. The nxþ 1 x-coordinates of
the cell boundaries are denoted by xiþ1=2 for i ¼ 0; 1; . . . ; nx and include the edges of the computational

domain; x1=2 ¼ xmin and xnxþ1=2 ¼ xmax. The nx x-coordinates of the cell centres xi for i ¼ 1; . . . ; nx lie half way
between the adjacent cell boundaries. Finally the nx� 1 separations between cell centres (internal to the
domain) are Dxiþ1=2 ¼ xiþ1 � xi where i ¼ 1; . . . ; nx� 1. The positions and separations of cell boundaries

and cell centres are similarly defined in the y- and v-directions. It is worth emphasising that the index

scheme adopted here is cell centre based. When implementing the boundary conditions ghost cells (external

to the domain) are used which have x-positions x0 and xnxþ1. Hence Dx1=2 and Dxnxþ1=2 are also defined and

used. Boundary conditions will be discussed in more detail in Sections 3.5 and 3.7.

The simulation quantities are placed in the following way. Along the velocity direction of phase space

the scalar and vector distribution functions are located at cell centres. In the spatial dimensions, f0 and x
are placed at cell centres while both components of f1 and E are placed at the midpoints of each of the 4
edges which define the cell in the x–y-directions, as depicted in Fig. 1. It is worth defining a notation to

distinguish between points lying on the x-cell boundaries and those lying on y-cell boundaries. For example,

fy located on an x-cell boundary will be written as f X
y while Ey on a y-cell boundary is EY

y . The set of points

on the x and y-cell boundaries are defined by

rXi;j ¼ x̂xiþ1
2
þ ŷyj; i ¼ 0; 1; . . . ; nx; j ¼ 1; . . . ; ny;

rYi;j ¼ x̂xi þ ŷyjþ1
2
; i ¼ 1; . . . ; nx; j ¼ 0; 1; . . . ; ny;

ð27Þ

respectively. The spatial placement of the quantities as shown in Fig. 1 is chosen to enable formulation of a

conservative scheme and to ensure that electron momentum is accurately treated when B 6¼ 0.

Having established the FD grid and placement of quantities we now define the full index notation that

will be used in writing the finite difference equations. The discrete values of the distribution function

components are written as
Fig. 1. Example of a spatial cell showing (a) location of x and y-boundary points rXi;j and rYi;j, and (b) placement of simulation

quantities.
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ðf0Þni;j;k ¼ f0ðxi; yj; vk; tnÞ;
ðf X

r Þ
n
i;j;k ¼ ðfrÞniþ1

2
;j;k ¼ frðxiþ1

2
; yj; vk; tnÞ;

ðf Y
r Þ

n
i;j;k ¼ ðfrÞni;jþ1

2
;k ¼ frðxi; yjþ1

2
; vk; tnÞ;

ð28Þ

where r ¼ fx; yg is an index over the vector components. Similarly the full index notation for E and x is

xn
i;j ¼ xðxi; yj; tnÞ;

ðEX
r Þ

n
i;j ¼ ðErÞniþ1

2
;j ¼ Erðxiþ1

2
; yj; tnÞ;

ðEY
r Þ

n
i;j ¼ ðErÞni;jþ1

2
¼ Erðxi; yjþ1

2
; tnÞ:

ð29Þ

The electric current and heat flow vector j and q are also located on x and y-boundaries and use the same

indexing scheme as E. Note that the two notations for cell boundary quantities, e.g., ðEX
r Þ

n
i;j and ðErÞniþ1=2;j,

will both be used in the following.
3.3. The f 1 equation

The finite difference form for the rth component of the f1 equation at location rbi;j, where b ¼ fX ; Y g
denotes the cell boundary, is

ðf b
r Þ

nþ1

i;j;k ¼ vnk
X

q¼fx;yg
drq
�"

þ �rzqx
ns0k

�n
� vk rqf0

� �nþ1

k
þ Enþ1

q ovf0ð Þn	k þ ðfqÞnk=Dt
o#b

i;j

; ð30Þ

where

vb;ni;j;k ¼
s0k

1þ ðxb;n
i;j s

0
kÞ

2
; s0k ¼

1

Dt

�
þ 1

sðvkÞ

��1

; ð31Þ

sðvkÞ ¼ v3k=ðZ2niÞ is the e–i scattering time, and dqr and �qrz are the Kronecker delta function and Levi–

Civita symbol, respectively. v represents how magnetisation and collisions affect the ability of electrons of

velocity vk at position rbi;j to contribute to transport. Electron inertia appears through the term in Dt in
(31). xb;n

i;j , the value of the B-field on the b-boundary, is obtained by linear interpolation from the ad-

jacent cell centres,

xX
i;j ¼ xiþ1

2
;j ¼ ð1� liþ1

2
Þxiþ1;j þ liþ1

2
xi;j;

xY
i;j ¼ xi;jþ1

2
¼ ð1� ljþ1

2
Þxi;jþ1 þ ljþ1

2
xi;j;

ð32Þ

where liþ1
2
¼ ðxiþ1 � xiþ1

2
Þ=Dxiþ1

2
and ljþ1

2
¼ ðyjþ1 � yjþ1

2
Þ=Dyjþ1

2
are the interpolation weights. Note that Eq.

(30) is obtained by eliminating x� fnþ1
1 between Eq. (14) and the equation x� (14).
3.3.1. Differencing of @vf0
The Eovf0 term is of key importance in achieving overall momentum balance. It describes how the

electric field decelerates the energetic, flux carrying electrons that leave a small region of plasma and how it

also draws the return current of cold electrons to replace them. This return current in turn ensures that the

plasma stays quasineutral. We use either forward differencing or centred differencing for this term
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of0
ov

� 	b;n	

i;j;k

¼
ðf0Þkþ1 � ðf0Þk

Dvk

� �b;n	
i;j

or ð33Þ

¼
ðf0Þkþ1 � ðf0Þk�1

Dvkþ1=2 þ Dvk�1=2

� �b;n	
i;j

; ð34Þ

where the value of f0 at the b-boundary is obtained via the same linear interpolation procedure used to for

the B-field (i.e., (32) but with x replaced by f0). Because f0 is not defined at velocity cell boundaries, ðf0Þkþ1

and ðf0Þk�1 rather than ðf0Þkþ1=2 and ðf0Þk�1=2 are used in the centred case. It was originally anticipated that

forward differencing (33) would be more robust than centred (34). The rationale for this is that Eovf0 is a
dominant term for hot electrons which are decelerated by the electric field. The ovf0 term yields an advective

term when the f0 and f1 equations are combined, i.e., otf0 / E2ovf0. Eq. (33) would then be consistent with

advection of these electrons towards v ¼ 0 in an upwind manner which is low order but known to be stable.
In practice centred differencing (34) has proved to be as reliable as forward differencing (even for highly

nonlinear, non-equilibrium situations) and is OðDv2Þ accurate rather than OðDvÞ. The implicit diffusion in v
arising from the FP collision term amongst other things is probably what renders the choice of differencing

for the ovf0 term unimportant for stability.

3.3.2. Differencing of rf0
Both components of rf0 use centred differencing. ðoxf0ÞX and ðoyf0ÞY are approximated by 2-point

differences which are accurate to OðDx2Þ and OðDy2Þ, respectively. ðoyf0ÞX and ðoxf0ÞY use 4 points owing
for the need to linearly interpolate f0 to the cell boundaries before taking the derivative and have a

truncation error of OðDx2 þ Dy2Þ. The equations for ðrqf0Þb are,

ðrqf0ÞXi;j ¼ ðrqf0Þiþ1
2
;j ¼ dqx

ðf0Þiþ1 � ðf0Þi

 �

j;k

Dxiþ1
2

þ dqy

ðf0Þjþ1 � ðf0Þj�1

h i
iþ1

2
;k

Dyjþ1
2
þ Dyj�1

2

;

ðrqf0ÞYi;j ¼ ðrqf0Þi;jþ1
2
¼ dqy

ðf0Þjþ1 � ðf0Þj
h i

i;k

Dyjþ1
2

þ dqx
ðf0Þiþ1 � ðf0Þi�1


 �
jþ1

2
;k

Dxiþ1
2
þ Dxi�1

2

:

ð35Þ
3.4. Vlasov part of the f0 equation

The Vlasov terms in the f0 equation are differenced in the following way:

LHS of ð13Þ ¼ f nþ1
0 � f n

0

Dt

� �
i;j;k

þ vk
3

ðfxÞiþ1
2
� ðfxÞi�1

2

n o
j;k

Dxi

264 þ
ðfyÞjþ1

2
� ðfyÞj�1

2

n o
i;k

Dyj

375
nþ1

� 1

3v2k

X
r¼fx;yg

Enþ1
r

ov2fr
ov

� 	n	

k

� �
i;j

: ð36Þ

The last term, the so-called Ohmic heating term, involves E and f1 at the x–y cell centre. There is some

freedom in how Er and fr are interpolated from the cell boundaries to the cell centre. Either (1) Ex and fx at
the �left� and �right� x-cell boundaries and Ey and fy at the �upper� and �lower� y-cell boundaries can be

linearly interpolated to the cell centre, (2) the converse can be done; Ex and fx at the y-cell boundaries and
Ey and fy at the x-cell boundaries can be linearly interpolated to the cell centre, or (3) both (1) and (2) can be

combined. For instance the interpolation used in method (1) is given by
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ðExfxÞi;j ¼
1

2
ðExfxÞiþ1

2

n
þ ðExfxÞi�1

2

o
j
;

ðEyfyÞi;j ¼
1

2
ðEyfyÞjþ1

2

n
þ ðEyfyÞj�1

2

o
i
;

ð37Þ

where the construction of the grid makes the necessary linear interpolation weights equal 1/2. In theory

method (2) complements how r� E is differenced in Faraday�s law (see Section 3.6) thereby ensuring

consistency between changes in magnetic energy and thermal energy in a cell. Since Ohmic heating typically

changes the electron temperature much more slowly than heat flow we find that the choice of interpolation
is not crucial.

3.4.1. Differencing of @vðv2f 1Þ
This term is differenced in the following way:

ov2fr
ov

� 	n	

i;j;k

¼
v2
kþ1

2

ðfrÞkþ1 � v2
k�1

2

ðfrÞk
Dvk

" #n	

i;j

: ð38Þ

Because fr is not defined at velocity cell boundaries, ðfrÞkþ1 and ðfrÞk rather than ðfrÞkþ1
2
and ðfrÞk�1

2
are used.

fr is displaced to higher velocity which provides consistency with the displacement of f0 in the ovf0 term

when forward differenced. (Note that centred differencing of ovf0 is more recent than forward, and a

corresponding centre differenced version of the ovðv2f1Þ has yet to be implemented.) Notice that v2
kþ1

2

and v2
k�1

2

rather than v2kþ1 and v2k are used though. The differencing in (38) ensures numerical conservation of electron

density as will be shown in Section 3.9 but does not enforce zero Ohmic heating when j ¼ 0. We find that
the velocity differencing of ovðv2f1Þ rather than the spatial interpolation of E � f1 to the cell centre is the

dominant source of numerical error in this term and is the chief cause of energy non-conservation overall.

3.5. Fokker–Planck part of the f0 equation

The e–e collision term in the f0 equation is differenced using a scheme devised by Chang and Cooper [41]

together with a modification due to Langdon [42,43]. Two important properties of the e–e collision term (15)

are that it conserves electron number and energy densities. The Chang–Cooper differencing scheme conserves

numerical number density, while Langdon�s modification makes the scheme energy conservative too. The

Chang–Cooper scheme has widely been used before [13–17] since it is implicit and has the following desirable

properties in addition to density conservation; in the absence of rounding errors it ensures that (i) e–e collisions

relax f0 exactly to a Maxwellian (in the absence of the perturbing flux f1) and (ii) f0 remains positive for all v.
Ensuring f0 relaxes accurately to fM is extremely important when considering magnetic field generation

otherwise spurious B-fields can be produced [8]. Negative f0 would simply be unphysical.

Following Chang–Cooper and Langdon the e–e collision operator is differenced in conservative form in v
(at each spatial cell centre),

ðCee0Þnþ1

i;j;k ¼
1cZ0v2k

Fkþ1
2
� Fk�1

2

Dvk

� �nþ1

i;j

; ð39Þ

where F is a generalised flux located at the velocity cell boundaries and is given by

F nþ1

i;j;kþ1
2

¼ Cn	
kþ1

2
ðf0Þnþ1

kþ1
2

(
þ Dn	

kþ1
2

ðf0Þnþ1

kþ1 � ðf0Þnþ1

k

Dvkþ1

)
: ð40Þ
2 i;j
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Obtaining F requires that f0 be implicitly known on the velocity cell boundaries. A key step of the Chang–

Cooper scheme is the interpolation of f0 from velocity cell centres to velocity cell boundaries using special

�equilibrium seeking� weights dkþ1
2

ðf0Þnþ1

kþ1
2
¼ ð1� dkþ1

2
Þðf0Þnþ1

kþ1 þ dkþ1
2
ðf0Þnþ1

k ; ð41Þ
dkþ1
2
¼ 1

Wkþ1
2

� 1

expðWkþ1
2
Þ � 1

; ð42Þ
Wkþ1
2
¼ Dvkþ1

2
Cn	

kþ1
2
=Dn	

kþ1
2

� 

: ð43Þ

The coefficient of dynamic friction in differenced form is simply

Cn	
kþ1

2
¼ 4p

Xk

l¼1

ðf0Þn	l v2lDvl: ð44Þ

Langdon�s modification, which allows e–e collisions to numerically conserve energy, involves differ-

encing D the coefficient of dynamic diffusion in the form given in Eq. (17) rather than the (analytically but

not numerically) equivalent form D ¼ ð4p=3Þ½v�1
R v
0
f0ðuÞu4 duþ v2

R1
u f0ðuÞudu� normally found in the

literature. In conservative difference form D is

Dn	
kþ1

2
¼ 4p

v	
kþ1

2

Xk

l¼1

v2l
Xnv�1

m¼l

ðf0Þn	mþ1
2
v	mþ1

2
Dvmþ1

2

( )
Dvl ðk ¼ 1; . . . ; nv� 1Þ;

Dn	
1=2 ¼ 0; Dn	

nvþ1
2
¼ 0; ð45Þ

where v	
mþ1

2

¼ ðvmþ1 � vmÞ=2 is slightly different from the cell boundary definition given in Section 3.2 which

is vkþ1
2
¼

Pk
l¼1 Dvl.

In the finite difference approximation the electron number and energy densities are defined by

ðneÞi;j ¼ 4p
Xnv
k¼1

ðf0Þi;j;kv2kDvk; ð46Þ
ðUeÞi;j ¼
4p
2

Xnv
k¼1

ðf0Þi;j;kv4kDvk: ð47Þ

Insisting that the generalised flux vanishes at v1=2 and vnvþ1
2
, the boundaries of the velocity domain, im-

mediately implies numerical conservation of electron density. Vanishing of the flux in turn imposes

boundary conditions in the v-direction; C1=2 ¼ 0, D1=2 ¼ 0, ðf0Þnvþ1
2
¼ 0 (which needs ðf0Þnvþ1 ¼ 0 and

dnvþ1
2
¼ 0) and Dnvþ1

2
¼ 0. Proof that the scheme conserves energy density is too involved to give here and the

reader is referred to [42,43] for further details.

Operators for collisional laser heating can be incorporated in the Fokker–Planck e–e collision term. We

use the inverse Bremsstrahlung operator derived in [40] which tends to distort f0 away from Maxwellian,

flattening it out in the vicinity of v ¼ 0. Heating operators can be spliced seamlessly into the existing dif-

ference formulation for ðCee0Þnþ1

i;j;k as described in [16]. We also use a variation on inverse Bremsstrahlung

which adds a contribution of D0v2 onto the Rosenbluth diffusion coefficient (45). In the absence of transport

(i.e., no spatial gradients or electric field) this operator increases the electron temperature at a rate

otTe ¼ 3D0=cZ0 , keeping f0 nearly Maxwellian all the while.
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3.6. Maxwell’s equations and the current constraint

In the finite difference approximation, the electric current is defined as

jbi;j ¼ � 4p
3

Xnv
k¼1

ðfb1Þi;j;kv3kDvk: ð48Þ

In difference form the rth component of Amp�ere�s law at x–y cell boundary point rbi;j is

ðr
h

� xÞbr
in
i;j
¼ �rqzðrqxÞb;ni;j ¼ � 4p

3d2c

Xnv
k¼1

ðf b
r Þ

nþ1

i;j;k v
3
kDvk; ð49Þ

where the components of the gradient of x at the cell boundary, ðrqxÞb, are given by (35) with f0 replaced
by x. Note that ðf b

r Þ
nþ1

i;j;k is related to E, f0 and x through (30). This �current constraint� ensures that the

implicitly obtained fnþ1
1 exactly yields the current at time tn. This equation effectively serves as an Ohm�s law

since it is responsible for relating E, j and gradients in density and pressure together in a way that yields the

correct momentum balance in the presence of a magnetic field. On a uniform spatial grid it can be shown

that �rqzðrqxÞbi;j ¼ ðjbr Þi;j=d
2
c ensures that

½r � j�nþ1

i;j ¼
ðjxÞiþ1

2
þ ðjxÞi�1

2

n onþ1

j

Dx
þ

ðjyÞjþ1
2
þ ðjyÞj�1

2

n onþ1

i

Dy
¼ 0 ð50Þ

(where Dx and Dy can be different) so that otne ¼ 0 exactly. On a non-uniform grid r � j 6¼ 0 is possible.

Faraday�s law in difference form is

xnþ1 � xnf gi;j
Dt

¼
ðExÞjþ1

2
� ðExÞj�1

2

n onþ1

i

Dyj
�

ðEyÞiþ1
2
� ðEyÞi�1

2

n onþ1

j

Dxi
: ð51Þ

3.7. Spatial boundary conditions

Reflective, periodic, and fixed boundary conditions are implemented in the code and can independently

be used in the x- and y-directions. Periodic boundary conditions are implemented in the normal way and

ensure that, e.g., Ejxmax
¼ Ejxmin

. With fixed boundary conditions, f0ðvÞ and x are specified in each of the

ghost cells just outside the relevant boundary rather than being treated implicitly. Two variations of re-

flective boundary conditions can be used. In both cases the gradients of the scalar quantities f0, ni and Z
across the boundary are zero, i.e., ŝ � rf0 ¼ 0, where ŝ is the unit vector normal to boundary. The difference

lies in how the magnetic field is treated and whether fluxes are allowed across the domain boundaries. In
one case the B-field is zero on the boundary and all components of fluxes and the E-field component normal

to the boundary vanish. Fluxes and a component of the E-field along the boundary are possible though. Of

course there can be a B-field gradient across the boundary generated by the current flowing along it. In the

second case, there is no B-field gradient across the boundary and no current along the boundary but fluxes

and an E-field component normal to the boundary are now possible. Note that while the current is re-

stricted to being normal to the boundary E, q and f1ðvÞ are free to cross it at any angle in this case.

3.8. Formation and solution of the sparse matrix

The finite difference equations which are solved together in order to obtain the implicitly differenced

quantities f nþ1
0 , fnþ1

1 and Enþ1 are (30), (36), (39), and (49). Solution of these equations is achieved by
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forming a sparse matrix from the equations and then using a matrix solver. In order to reduce the di-

mension of this sparse matrix fnþ1
1 is eliminated from the set of equations by substituting Eq. (30) into (36),

the Vlasov part of the f0 FDE, and (49) the current constraint (Amp�eres law). After elimination of fnþ1
1 the

VFP equation for the evolution of f0 at point xi; yj; vk in phase space, in a compact matrix coefficient form,

is

Gp;q;sðxi; yj; vkÞf0ðxiþp; yjþq; vkþs; tnþ1Þ þ Hr;b;m;nðxi; yj; vkÞEb
r ðxiþm; yjþn; tnþ1Þ ¼ Cðxi; yj; vkÞ; ð52Þ

where p; q; s ¼ f�1; 0; 1g and m; n ¼ f�1; 0g are finite difference offsets and r; b ¼ fx; yg. Summation over

the indices p; q; s and m; n is implied in (52). Similarly the current constraint for jr at rbi;j becomes

Mc;d;sðr; b; xi; yjÞf0ðxiþc; yjþd ; vs; tnþ1Þ þ Ngðr; b; xi; yjÞEb
gðxi; yj; tnþ1Þ ¼ Dðr; b; xi; yjÞ; ð53Þ

where c; d ¼ f�1; 0; 1g are finite difference offsets, s ¼ f1; . . . ; nvg effects integration over v and g ¼ fx; yg,
and where summation over c; d; s; g is implied. Note that the matrix coefficients G, H , M and N vary with
position on the grid. M and N also vary with vector component r. Also some elements of G, H and M are

always zero; Gp;q;
1 ¼ 0 for p 6¼ 0 and q 6¼ 0, Hr;X ;m;�1 ¼ Hr;Y ;�1;n ¼ 0 and M�1;�1;s ¼ 0.

Together (52) and (53) form a set of nd linear algebraic equations for the nd unknowns f0ðxi; yj; vk; tnþ1Þ
and Eb

r ðxi; yj; tnþ1Þ, where nd ¼ ncþ 2� ½2ðnx� nyÞ þ nxþ ny� and nc ¼ nx� ny � nv. Each of these linear

algebraic equations forms one row of the matrix equation. Symbolically, this matrix equation can be

written as An	 � xnþ1 ¼ Bn, where xnþ1 is the vector of nd unknowns to be solved for. A realisation of this

sparse matrix when nx� ny � nv ¼ 4� 4� 4 is shown in Fig. 2.

The diagonal elements of the matrix An	 are G0;0;0ðxi; yj; vkÞ for i ¼ f0; . . . ; nxg, j ¼ f1; . . . ; nyg and
k ¼ f1; . . . ; nvg, and Nrðr; b; xi0 ; yj0 Þ. The defined ranges of i0 and j0 for b ¼ fX ; Y g were given in (27). By

eliminating fnþ1
1 the dimension of the sparse matrix is reduced from approximately 5� nc while the total

number of non-zero matrix elements decreases from approximately 51� nc to 43� nc. In fact the element

count of the unreduced sparse matrix would rise to 55� nc if the Ohmic heating term in the f0 FDE were to

use the value of ðErÞnþ1
on all 4 cell boundaries when obtaining the E-field at the cell centre.

Solution of the resulting non-symmetric sparse matrix equation An	 � xnþ1 ¼ Bn for xnþ1 is achieved

using the bi-conjugate gradient stabilised method [44] with Jacobi preconditioning (also known as diag-

onal preconditioning). The bi-conjugate gradient stabilised method (Bi-CGSTAB) is an iterative matrix
solver. The �normal� bi-conjugate gradient method (Bi-CG) [45] has also been tried but typically takes

three times more iterations than Bi-CGSTAB to converge for a given matrix that arises in this numerical

scheme. Once f nþ1
0 and ðEb

r Þ
nþ1

have been obtained by solving the matrix equation fnþ1
1 has to be cal-

culated using Eq. (30) in order to proceed with the next nonlinear iteration. This is because it appears in

the lagged, nonlinear coefficient in the Ohmic heating term (see Eq. (13)) and is thus part of the matrix

An	. The nonlinear iteration is continued until the absolute fractional change in jxj drops below a

specified tolerance. The final step required to advance the solution from tn to tnþ1 is to update the

magnetic field using Faraday�s law (51). It should be noted that IMPACT uses double precision floating
point arithmetic (i.e., 64 bit) throughout.
3.9. Conservation properties

Mass and total energy (thermal +magnetic) are the quantities conserved by Eqs. (13)–(20) used by the

model. Electron momentum is not conserved but total momentum (electrons + ions + electro-magnetic)

would be conserved if ion-motion and the displacement current were included in the model. The continuity

equations for mass and total energy (in normalised form) are

otne �r � j ¼ 0; ð54Þ



Fig. 2. Sparse matrix for nx� ny � nv ¼ 4� 4� 4 with periodic spatial boundary conditions. Rows/columns corresponding to ðf0Þnþ1

i;j;k

appear first followed by ðEb
r Þi;j. The phase space is unravelled in the following order (fastest to slowest varying dimension); v, y, x. For E

the ordering of the indices/dimensions across the matrix is (fastest to slowest varying); r (vector component), y, b (cell boundary), x.
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otðUe þ UBÞ þ r � qTf þ Sg ¼ 0; ð55Þ

where UB ¼ x2=2d2c is the magnetic energy density and S ¼ ðE� xÞ=d2c is the Poynting flux. Eqs. (54) and

(55) are obtained by taking number density and energy moments of the f0 equation. The Ohmic heating

term in the resulting energy equation otUe þr � qT ¼ E � j is then converted to E � j ¼ �ðotUB þr � SÞ by
using Amp�ere�s law and Faraday�s law. Note that the Ohmic heating term is responsible for conversion of

electro-magnetic energy into internal/thermal energy of the electrons (and vice versa). Also, the electric field

energy density does not appear in (55) because the displacement current is neglected. Eqs. (54) and (55)

show that mass and total energy are conserved in a closed system. Furthermore, because j / r� x the

electron number density never changes.
The numerical scheme ensures conservation of mass. It also ensures that the number density remains

static when a uniform spatial grid is used. Energy is not exactly conserved though due to the differencing of

the Ohmic heating term in the f0 equation. Numerical conservation of mass can be seen by taking the FD

number density moment/sum, defined by Eq. (46), of the differenced Vlasov equation (36) and Fokker–

Planck e–e collision term (39) for f0 which yields

nnþ1
e � nne
Dt

� �
� ðr � jÞnþ1

i;j � 4p
3
Enþ1

i;j � v21=2ðf
n	
1 Þ1

h
� v2nvþ1

2
ðfn	1 Þnvþ1

i
i;j
¼ 4p

3cZ Fnvþ1
2

h
� F1=2

inþ1

i;j
: ð56Þ
i;j 0
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Since v1=2, ðfrÞnvþ1, F1=2, and Fnvþ1
2
all equal zero, the Ohmic heating and Fokker–Planck terms individually

sum to zero and the numerical equivalent of (54) is recovered which conserves total mass in the compu-

tational domain. The reason why the scheme does not exactly conserve energy can be seen by taking the FD

energy sum (defined by (47)) of the f0 equation. This does not quite yield the discrete analogue of

otUe þr � qT ¼ E � j. While the terms otUe and r � qT are recovered, and the numerical Fokker–Planck

collision term vanishes [42,43] the Ohmic heating term is not exactly obtained. Doing the energy summation

over ð1=3v2Þovðv2frÞ followed by rearrangement of the terms (in a way analogous to integration by parts)

yields ðjrÞ	 ¼ ð�4p=3Þ
Pnv�1

k¼1 ðfrÞkþ1ðv2v	DvÞkþ1
2
, where v	

kþ1
2

¼ ðvkþ1 þ vkÞ=2. This is not quite the same as
ðjrÞ ¼ �ð4p=3Þ

Pnv
k¼1ðfrv3DvÞk, the �real� numerical current which the scheme ensures equals d2cr� x, and

thus ðjrÞ	 does not necessarily vanish when r� x ¼ 0.
4. Tests

IMPACT has been comprehensively tested to make sure that it correctly recovers phenomena and effects

that are known to be described by the equation set (13)–(20). Testing the code is challenging because, in

general, analytical solution of the whole equation set is impossible. Most of if not all of the effects that are

quantitatively understood and are therefore suitable for testing against make simplifications/assumptions

somewhere in their derivation. The tests shown below in Sections 4.1–4.3 compare the code against classical

transport which is valid in the local/fluid limit since it assumes f0 ¼ fM. We have developed one test, de-
scribed in Section 4.4, which tests transport and magnetic field generation beyond the classical limit and

works while f0 is mildly non-Maxwellian. No fully kinetic theory of transport in a collisional magnetised

plasma which applies when f0 is strongly non-Maxwellian exists yet. Understanding what happens in this

regime is a prime reason for developing IMPACT. A table of CPU times, memory usage, and the average

number of nonlinear iterations required per time step, for representative runs from each test, can be found

in Section 4.6.

4.1. Reproducing classical transport

We consider the electric field and heat flux generated by gentle temperature and density gradients (with

LT ; Ln � k) in the presence of a strong magnetic field. We show that in this limit (i.e., LT ; Ln � k) the electric
field and heat flux obtained from IMPACT agree with those predicted from the well-known classical,
electron transport equations of Braginskii [1],

E ¼ �rPe
nee

þ j� B

nee
þ a � j� b � rTe; ð57Þ
q ¼ �j � rTe � Teb � j; ð58Þ

where a, b and j are the electrical resistivity, thermoelectric and thermal conductivity tensors, respectively.
These transport coefficients appearing in Ohms law (57) and the heat flow equation (58) are tensor (rather

than scalar) quantities because the transport fluxes (e.g., q, j) are not parallel to the driving forces (e.g., rTe,
rPe, E) when a magnetic field is present. For instance in the 2-D geometry adopted here with a perpen-

dicular B-field the heat flow driven by a temperature gradient is the sum of two parts, q ¼ �j � rTe ¼
�j?rTe � j^b̂�rTe, one part directed down the temperature gradient and one directed perpendicular to

direction of rTe and magnetic field line (b̂ denotes the B-field direction) which is known as the Righi–Leduc

heat flow. In classical transport theory, calculation of a, b and j is achieved using the local approximation

whereby f0 ¼ fM. IMPACT on the other hand dispenses with this approximation so we have to make sure
that f0 does not deviate too far from Maxwellian in order to make a meaningful comparison with classical
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transport theory. For this reason f0 is initialised as a Maxwellian (with the required temperature and

density) at each point on the grid. Then, by using a large domain, keeping the perturbations of T , n and Z
small in amplitude and evolving the system for a short time we ensure that f0 ¼ fM to very good

approximation.

The test system has a size of xl � yl ¼ 5000� 5000 (in normalised units) where xl ¼ xmax � xmin is the x-
length, etc. It is initialised with the following temperature, density, ionisation number and magnetic field

profiles which are depicted in Fig. 3; dT ðx; yÞ ¼ 0:0005½cosðkxxÞ þ cosðkyyÞ�, dnðx; yÞ ¼ 0:0005½cosðkxxÞþ
cosðkyfy � 5000gÞ�, dZðx; yÞ ¼ 0:02½cosðkxfx� 5000gÞ þ cosðkyyÞ� and xðx; yÞ ¼ 0:1 cosðkxfx� 2500gÞ cos
ðkyfy � 2500gÞ, where kx ¼ p=xl and ky ¼ p=yl. Note that x � 0:1 corresponds to quite strong magnetisa-

tion. Reflective boundary conditions with x ¼ 0 on the boundary, Z0 ¼ 10, dc ¼ 1, vmax ¼ 8 and forward

differencing of Eovf0 are used. The inertial term otf1 is switched off so that comparison with (57) and (58)

can be made but e–e collisions are turned on. Fig. 4 shows the electric field, total heat flow, electric current

and error in the E-field at the x-cell-boundaries after a single time step of Dt ¼ 0:1, when nx ¼ ny ¼ 48 and

Dv ¼ 1=100. The total heat flow qT includes transport of thermal energy by the drift of electrons and is

related to the intrinsic heat flow q by qT ¼ q� j½ð5=2ÞpIþP�=n� jj2=ð2n3Þ [46]. While the electric current is

equal to r� x and is 90� rotationally symmetric about ðx; yÞ ¼ ð2500; 2500Þ, this is not quite true for qT
and E due to their dependence on T , n and Z (partly through the transport coefficients). Both the heat flow

and the electric field are dominated by terms involving j, though the pressure and temperature gradient

terms do contribute as well. Cross-field effects are not negligible and give rise to the �outward swirling�
behaviour of qT and particularly E. For example, a^ðj� b̂Þ and j� B are responsible for the cross-field

effects in the case of E. The reason why the error in the E-field (Fig. 4(d)) is closely reminiscent of the E-field

itself is that the code slightly overestimates the electrical resistivity (and the j� B term too). Note that j
Fig. 3. Profiles for classical transport test. (a) dTe, (b) dne, (c) dZ and (d) magnetic field profile. Dashed contours denote negative iso-

value. All quantities are in normalised units given in Eq. (12).



Fig. 4. Profiles of (a) electric field, (b) total heat flow, (c) electric current, and (d) error in the E-field from IMPACT at the x-cell
boundaries at t ¼ Dt ¼ 0:5. The E-field error shown is defined as ðEjjcode � Ejjan:Þ=hjEjan:irms. Contours represent the magnitude of the

field while arrows denote its direction. Contours are plotted in steps of 2:5� 10�6, 2:5� 10�5, 10�5, and 5� 10�3 for E, qT, j, and Eerr,

respectively.
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itself is accurately obtained by virtue of the current contraint; jXx and jXy are correct to 0.12% and 0.018%,

respectively. These errors solely arise from the FD approximation to the curl operator (see Sections 3.3.2

and 3.6) which is why jXy / �ðoxxÞX (a 2 point difference) is more accurate than jXx / ðoyxÞX (a 4 point

difference). In a similar way jYx is more accurate than jYy . IMPACT gets the values of EX
x and EX

y correct to
within 1.5% while the error in qXx and qXy is 0.4% and 0.3%, respectively, for this test case. The accuracy of E

and qT at the y-cell boundary is virtually identical (but not precisely the same since the system is not 90�
rotationally invariant). As well as demonstrating that IMPACT can accurately recover classical transport

the results also show the ability of the code to resolve small perturbations. The quoted error values are root-

mean-square (rms) differences between the code and analytical values as a percentage of the rms analytical

values (calculated using Eq. (57) and (58) ), e.g., error ¼ hExjcode � Exjan:i=hExjan:i, where h� � �i denotes rms

averaging over all the ðnxþ 1Þ � ny x-cell boundaries in the domain. All the errors vary smoothly over the

domain and almost vanish in places, so that the maximum error anywhere never exceeds about twice the
rms error. In order to reveal such good agreement, the analytical values themselves have to be carefully

calculated. We numerically calculate the transport coefficients (in the Lorentz limit) using the formulae of

Epperlein and Haines [46,47] rather than using �standard� polynomial fits for a?, b?, etc., which can be over

10% out at the magnetic-field strength present in this test.

We have also investigated how IMPACT converges to the classical result as Dv and Dx are varied. Fig. 5
shows how the E-field and heat flow components from IMPACT converge to the classical values as the

velocity resolution is increased at fixed spatial resolution (nx ¼ ny ¼ 24). Ex and Ey converge as Dv until

high resolution is reached when Ex starts converging quicker. Scaling of the error with Dv is consistent with
the use of forward differencing in the Eovf0 term in the f1 equation. qx and qy converge more slowly than Dv
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x and qXy (þ, �, s, and � symbols, respectively) calculated by IMPACT to the classical transport

values as Dv is reduced. The errors shown are root-mean-square (rms) differences between the code and analytical values as a per-

centage of the rms analytical values, e.g., error ¼ hExjcode � Exjan:i=hExjan:i where h� � �i denotes rms averaging over all the ðnxþ 1Þ � ny
x-cell boundaries in the domain. The code values are calculated using nx ¼ ny ¼ 24 and vmax ¼ 8.

R.J. Kingham, A.R. Bell / Journal of Computational Physics 194 (2004) 1–34 21
and the final errors appear to tend to about 0.5% and 0.1% at this spatial resolution. Fig. 6 shows how the
errors vary with 1=nx / Dx (with Dx ¼ Dy) when Dv ¼ 0:01. The errors initially scale as Dx2 which is

consistent with spatial differencing used in the f1 equations which is centred and therefore second-order

accurate in Ds when the x and y cell widths are uniform. The errors in Ex and Ey show evidence of mini-

mizing at around nx ¼ ny ¼ 10, which suggests that the overall error in E is in fact a function of Dv and Dx,
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Fig. 6. Convergence of EX
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X
x and qXy (þ, �, s, and � symbols, respectively) calculated by IMPACT to the classical transport

values as Dx is reduced when Dv ¼ 0:01. Definition of the percentage error is given in Fig. 5.
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Dy. For the system considered here Fig. 6 demonstrates that decreasing Dx below �xl=10 without also

decreasing Dv is detrimental to the accuracy of Ex and Ey . It should be noted that the local truncation-error

function depends on the local shape of the Te, ne, Z and x profiles. Therefore, the optimal way in which to

decrease Dv and Dx so as to give the best overall error reduction for all quantities at all places would be

difficult, in general.

The dependence of the error on Dx can be removed by calculating the classical values of E and q using

finite difference approximations for the derivatives rTe, rPe and j ¼ r� x in Ohm�s law and the heat flow

equations. As well as handling derivatives in the same way that IMPACT does, i.e., using (35), the transport
coefficients are calculated using values of x, Te, ne and Z2ni that have been linearly interpolated from cell-

centres to cell-boundaries (as the code does). When using centred velocity differencing for Eovf0 and re-

moving the spatial discretisation error we find that the remaining numerical error scales exactly as Dv2 as
can be seen in Fig. 7(a). Additionally, all quantities have very similar errors. This should be compared to

Fig. 7(b) where the spatial discretisation error has not been removed. Note that removal of the spatial

discretisation error when using forward velocity differencing results in the numerical error scaling exactly as

Dv.
4.2. rne �rTe B-field generation

There is a well-known mechanism [3,4] that can spontaneously generate magnetic fields in plasma from

non-collinear temperature and density gradients; otx ¼ �ðrne �rTeÞ=ne. It is important to test IMPACT�s
ability to model B-field generation as this effect was not accessible to previous VFP codes.

The system for testing rne �rTe magnetic field generation has the following parameters: a size of

xl � yl ¼ 500� 500, a spatial cell size of Dx ¼ Dy ¼ 20, a velocity resolution of (a) Dv ¼ 0:1 or (b) Dv ¼ 0:02
(with vmax ¼ 8 in both cases), dc ¼ 10�3 to keep B-field diffusion to a minimum, and Dt ¼ 5:0. Z0 ¼ 0:1 is

used to boost e–e collisions so that f0 does not deviate too far from Maxwellian as transport occurs. This

keeps IMPACT in the �local� regime so that meaningful comparison can be made against rne �rTe B-field
generation which is a �local� mechanism that assumes f0 ¼ fM. The system is initialised with x ¼ 0,

dTe ¼ 0:01 cosðkxxÞ and dne ¼ dni ¼ 0:01 cosðkyyÞ, where kx ¼ p=xl and ky ¼ p=yl. Reflective boundary
conditions with x ¼ 0 and forward velocity differencing for the Eovf0 term are used. We find that

rne �rTe B-field generation does indeed occur and the resulting magnetic field at t ¼ 2500 is shown in

Fig. 8(a). The profile of this field has a sinðkxxÞ sinðkyyÞ shape which is in agreement with the prediction of

the rne �rTe mechanism for the temperature and density gradients present. The electric field, total heat

flow and electric current at time t ¼ 2500 are shown in Figs. 8(b)–(d). The peak growth rate obtained in the

simulations compares well with the analytical result as can be seen in Fig. 9. The code gets the initial growth

rate to within about 8% and 1% for the Dv ¼ 0:1 and Dv ¼ 0:02 runs, respectively, at the start. The sub-

sequent gradual decrease in the growth rate is due to the decay of the temperature perturbation that drives
that B-field source. The density perturbation on the other hand is found to remain fixed which is in

agreement with the expected behaviour of the numerical scheme.
4.3. B-field resistive diffusion and Ohmic heating

Resistive diffusion of the magnetic field and Ohmic heating of the plasma by currents are related phe-

nomena. The dissipative losses that cause the B-field to diffuse transfer energy from the magnetic field to the

thermal energy of the plasma so that (in the absence of the displacement current), the total energy

WT ¼
R
ðUe þ x2=2d2cÞd

3x in a closed system does not change. The equations for resistive diffusion of

magnetic field and Ohmic heating are (in normalised form) _x ¼ �d2cr� ða?r � xÞ and
_UejOhm ¼ E � j ¼ a?j2 ¼ a?d

4
c jr � xj2.
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Fig. 7. Reduction of % error in fields calculated by IMPACT with Dv when central differencing (rather than forward differencing) is

used for the Eovf0 term. (a) With and (b) without removal of the error contribution from spatial discretisation (see text for detail on

how removal is achieved). The code values are calculated using nx ¼ ny ¼ 24 and vmax ¼ 8. See Fig. 5 for meaning of symbols.
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We use the following setup to test the code on these effects: xl ¼ 600 and Dx ¼ 20 (a 1-D system)

vmax ¼ 8, dc ¼ 5 to promote diffusion and heating, Z0 ¼ 10, and Dt ¼ 0:5. The initial magnetic field profile is

xðxÞ ¼ 0:1 sinðkxxÞ with kx ¼ p=xl while the temperature and density profiles are uniform at t ¼ 0. Under

these conditions the magnetic field initially accounts for about 8% of the total energy. Reflective boundary

conditions with x ¼ 0 at the edges are employed and the Rosenbluth coefficients are recalculated for each

nonlinear iteration. Fig. 10 shows how the magnetic-field energy (solid line, without symbols) decreases

with time. Total energy is not quite conserved but gradually decreases with time as shown. For Dv ¼ 0:1,
the Ohmic heating is about 9% lower than it should be which is why energy is being lost from the system.

Increasing the velocity resolution results in a linear reduction of the Ohmic heating error with Dv as can

clearly be seen by the downwards vertical shift of the �total energy loss� curves. This is consistent with the



Fig. 8. (a) rne �rTe generated magnetic field at t ¼ 2500. The corresponding electric field, total heat flow vector and electric current

are shown in (b), (c), and (d), respectively. Contours are displayed in steps of 2:5� 10�6, 4� 10�5, 10�4, and 10�14 in (a) to (d), re-

spectively. All quantities are in normalised units given in Eq. (12).
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Fig. 9. Comparison of the peak rne �rTe B-field growth rate otx as calculated by IMPACT using Dv ¼ 0:1 and Dv ¼ 0:02 (� and s,

respectively) with the analytical, classical growth rate (solid curve). Decay of the temperature gradient due to thermal conduction is not

taken into account in the analytical value of _x.
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forward velocity differencing used in the E � ovðv2f1Þ term in the f0 equation. The accuracy of Ohmic heating

is found to be similar in 2-D.

To test magnetic-field diffusion in 2-D we use a reduced initial B-field amplitude of x0 ¼ 10�3, but keep
the same domain size and mesh sizes; Dx ¼ Dy ¼ 20, Dv ¼ 0:1. Though B-field diffusion occurs in the Ohmic

heating test system above where x0 ¼ 0:1, it is nonlinear because the diffusion coefficient d2ca? depends on x
and varies significantly with position and time for this larger magnetisation. The B-field diffusion equation

would itself have to be solved numerically in order to obtain an accurate benchmark to compare IMPACT

against. Instead we opt for x0 ¼ 10�3 which makes the diffusion linear allowing the benchmark result to be

readily obtained; xðtÞ ¼ xðt ¼ 0Þ expð�t=scÞ, where sc ¼ ½ðk2x þ k2y Þd
2
ca?�

�1
and the resistivity equals the

unmagnetised value of a0 ¼
ffiffiffi
p

p
=8 to within 0.004%. The decay of the B-field is followed for about 2e-

foldings. As shown in Fig. 11 the B-field decay from IMPACT (dashed line) is almost the same as the
analytical result (solid line) when centred differencing of the Eovf0 term is used. In this case, the code value

for the decay time sc is 1.7% larger than the analytical value of 2532.8 . With forward differencing (dotted-

dashed line) the decay occurs more quickly than the ideal result and sc is about 15% smaller than the

analytical value. This larger error in sc occurs because a? is not obtained as accurately. In both cases

Dt ¼ 5, Z0 ¼ 1, and d2c ¼ 20 are used and the Rosenbluth coefficients are updated for each inner/nonlinear

iteration. The Ohmic heating error for these runs is again about 8% and not quite all of the magnetic field

energy is transferred to the plasma as the field decays.

4.4. rTe �r(r2Te) non-local B-field generation

The tests so far have proved that IMPACT correctly recovers classical transport phenomena. We now

introduce a test to verify the code beyond the classical, fluid limit. This test checks whether the code can

correctly model magnetic field generation from a non-uniform temperature profile when rne ¼ 0. This is a
non-local effect that arises when f0 is allowed to become non-Maxwellian [8]. Under these conditions the

rne �rTe mechanism, which is based on classical transport and therefore uses the local approximation,

predicts that no magnetic field would be produced. The equation for the early stages of non-local B-field

generation (in normalised form) is
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Fig. 11. Comparison of exponential B-field decay. The analytical value of xðtÞ=x0 (solid curve) is shown alongside the code results for

forward (dotted–dashed curve) and centred (dashed curve) differencing of the Eovf0 term.
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€xNL ¼ �154:21
T 3=2
e

Z2ni
½rTe �rðr2TeÞ� ð59Þ

assuming that f0jt¼0 ¼ fM (at each spatial point), xjt¼0 ¼ 0, and that the temperature perturbation is small,

i.e., dT ðrÞ < T0, where Te ¼ T0 þ dT ðrÞ. Eq. (59) is valid so long as decay of the temperature profile is

negligible and f0 does not deviate far from Maxwellian. e–e collisions and otf1 are ignored when deriving

(59) from the VFP equations (13) and (14). (Note the sign of Eq. (1) in [8] is wrong and should be )ve as in
(59) here.) This non-local B-field generation mechanism is a higher order effect than the rne �rTe source
and is therefore a more stringent test of the code. Also this effect tests that the numerical implementations

of both the f0 and f1 equations couple together in the correct way. Additionally, testing the code against the

non-local mechanism determines whether the numerical implementation of the f1 equation and Amp�ere�s
law work correctly when f0 6¼ fM (unlike the previous tests).

To perform the test, we use a large system of size xl � yl ¼ 3000� 1000, nx ¼ 180, ny ¼ 60, Dv ¼ 1=20
and vmax ¼ 7. The initial temperature perturbation is plotted in Fig. 12(a) and is described by the equation

dT ¼ 0:0025½1� tanhfðx� x0ðyÞÞ=dg� with x0ðyÞ ¼ ðxl=2Þ þ ðyl=8Þ cosðpy=ylÞ and d ¼ xl=6, while T0 ¼ 0:5
(which corresponds to vt ¼ 1 with our normalisations) and xjt¼0 ¼ 0. Other parameters used are dc ¼ 10�3=2

and Dt ¼ 5. Central differencing was used in the Eovf0 term. The non-local B-field from IMPACT at t ¼ Dt
depicted in Fig. 12(b) is larger than the analytical result shown in Fig. 13(a) and there are differences be-

tween the two profiles. The reason for this discrepancy is that the non-local mechanism is not yet fully

resolved numerically and smaller values of Dv and Dx, Dy are needed. It turns out that the numerical al-

gorithm yields r� E 6¼ 0 at t ¼ 0 (shown in Fig. 14) even though f0 ¼ fM at this time so that E ¼ �rTe
and _x ¼ �r� E ¼ 0 should ideally be the case initially. Just considering the effect of velocity discretisation

alone, the way the scheme calculates E actually yields E ¼ �frfneT 5=2
e þOðDvÞgÞ=fneT 3=2

e þOðDvÞg (when
x ¼ 0 and f0 ¼ fM). In general, elimination of the error terms OðDvÞ would still not ensure r� E ¼ 0

precisely because spatial discretisation means that the identity r� fðrgaÞ=gbg ¼ 0 does not quite hold

numerically for an arbitrary 2-D profile g even for uniform grids. Subtracting this �systematic� numerical

error from the raw code result yields a corrected B-field (Fig. 13(b)) that agrees well with the analytical

result. The correction used is xcorrjt¼Dt ¼ xrawjt¼Dt þ Dtðr � Ejt¼0Þ. Comparison of the figures shows that



Fig. 13. (a) Analytical value for non-local magnetic field due to the �rTe �rðr2TeÞ mechanism. (b) Corrected, non-local magnetic

field profile at Dt from code.

Fig. 12. (a) Initial, non-uniform temperature perturbation causing B-field growth even though rne ¼ 0. (b) Non-local magnetic field

profile at Dt.

Fig. 14. Finite differencing error in r� E at t ¼ 0. Analytically, r� E ¼ 0 initially since E ¼ �rTe at t ¼ 0.
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the profile/shape of the corrected, numerical, B-field almost exactly agrees with the solution of Eq. (59) but

the magnitude is overestimated by a factor of 2. The reason why the numerical value is twice the analytical

value stems from the backwards time differencing used in Faraday�s law (51). The non-local mechanism

makes r� E increase linearly with time from zero. Hence using ðr � EÞnþ1
results in twice the correct

value after the first time step. The backwards time differencing result xBT converges to the exact value xex:

as xBT=xex: ¼ ðnþ 1Þ=n with increasing time (ignoring errors due to spatial discretisation). Centred time

differencing of Faraday�s law would alleviate this temporal discretisation error. We note that repeating this

test with better numerical resolution should see the systematic, numerical r� Ejt¼0 6¼ 0 error reduce to a
level that is negligible compared to the real physical effect. Then correction of the raw result would be

unnecessary. Alternatively, keeping the resolution used here but making the comparison at a later time

when (i) the physical effect (/ t2) dominates over the numerical error (/ t) but (ii) Eq. (59) is still valid

would see better agreement between the raw numerical and exact results.
4.5. Other tests

IMPACT is able to accurately follow the exponential decay of an initial, long wavelength, temperature

perturbation dTe=T0 ¼ 0:01 cosðkxxÞ when x0 ¼ 0:1, xl ¼ 3000, using a very large time step of Dt ¼ 2000.

(Other parameters are nx ¼ 20, Dv ¼ 0:025, vmax ¼ 6 and Z ¼ 10.) This time step is still smaller than the

characteristic decay time of sc � 9:3� 104 though. The decay constant obtained from the code is accurate

to within 1% over the duration of the run and the mass and thermal energy in the system are conserved to
better than 0:3� 10�9% and 6� 10�9%, respectively, at t ¼ tmax ¼ 2� 105. Initially about 2000 nonlinear

iterations (per time step) are needed for the solution to converge. This drops to about 1500 at the end of the

run. The excellent energy conservation of 6� 10�9%, possible because Ohmic heating is turned off, verifies

that Langdon�s method for making the Fokker–Planck e–e collision operator conserve energy works. The

number of nonlinear iterations per time step can be reduced if less stringent energy conservation is required.

Note that the Rosenbluth coefficients must be updated within the nonlinear iteration for this test. The effect

of e–e collisions on f0 is not properly estimated for large Dt when the Rosenbluth coefficients are treated

explicitly which manifests itself through gross inaccuracies in transport (e.g., apparent suppression of
thermal conductivity) as well as a loss of energy conservation.

The interplay between the number of nonlinear iterations per time step and Dt for systems with

LT ; Ln � k, where things evolve slowly compared to s, has been investigated using a test problem similar to

the one above. The only differences are that Ohmic heating is included, Dv ¼ 0:1, and the matrix solver and

nonlinear iteration tolerances are relaxed from �10�11 and 10�15 to 10�10 and 10�9. Both Z ¼ 1 and 10 have

been tried. When Dt exceeds the order of 1 to 10see and the Rosenbluth coefficients are updated within the

nonlinear iteration, a further increase in Dt is accompanied by an almost equal increase in the number of

nonlinear iterations required, resulting in a marginal saving in computational effort overall. For example,
when Z ¼ 10, with Dt ¼ 50 it takes 220 s, a total of 797 nonlinear iterations, and a total of 33,920 matrix

solver iterations to reach t ¼ 2000 (totals are accumulated over each time step) while using Dt ¼ 2000 takes

190 s, 596 nonlinear iterations, and 53,959 matrix solver iterations to reach the same time. (See the caption

for Table 1 for a description of the hardware used.) In this case, using Dt ¼ 2000 proves to be quicker

because building the matrix is much more �expensive� than solving the matrix equation. Nevertheless, it is

preferable to limit the time step to around 5see so that a more accurate solution can be attained for only

marginally more computational effort. The number of nonlinear iterations is unlikely to change much if a

finer grid is used, or even if the system were 2-D (as long as sc remains similar), but the relative cost of
calculating matrix coefficients compared to solving the matrix decreases. This suggests that for expansive

systems (i.e., LT ; Ln � k) with a large number of grid points in phase space, very large time steps may not

minimize the computational effort. In comparison, for smaller scale systems where non-local effects are



Table 1

CPU time, memory usage, and average number of nonlinear iterations per time step for a selection of the test runs

Section 4.1 4.2 4.3 4.4 4.5

Figure 5 and 6 9 11 12 and 13 –

nv; nx; ny 800; 24; 24 400; 25; 25 80; 30; 20 140; 180; 60 240; 40; 1

nt 1 500 1000 1 100

Dt 0.1 5 5 5 2000

Matrix solver tolerance 10�15 10�13 10�13 10�13 �10�11

Nonlinear iteration tolerance 10�13 10�11 10�11 10�12 10�15

RB coefficient iterated? Yes No Yes No e–e collision Yes

nd 482,000 262,000 52,100 1,560,000 10,100

Nsparse 19,300,000 10,500,000 2,020,000 61,600,000 244,000

Average nonlinear iterations 3 2 15.7 3 1732

Total CPU time 2.5 min 57 h 24 h 15 min 138 h

Memory usage 580 MB 293 MB 62 MB 1.8 GB 15 MB

These tests were run on a single 2 GHz Pentium 4 Xeon processor of a �DELL Precision 530� workstation with 2 GB of RAM

running Linux. Programs were compiled using the Gnu Fortran 77 compiler. A summary of important run parameters are included.

The dimension of the matrix nd and the number of non-zero elements Nsparse are listed to three significant figures. Convergence of the

matrix solver is achieved when kA � x� Bk2=kBk2 < TOL, while nonlinear iteration convergence is achieved when the fractional change

in kxk2 drops below the desired tolerance.
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prominent, the time step will need to be small enough to resolve the phenomena of interest and very large

time steps are not appropriate.

We have also tested the e–e collisions in IMPACT by following the collisional relaxation of f0 to fM
when initially non-Maxwellian [48]. The results obtained originally in [48] and later refined in [49] were
recovered.

Finally, a similar set up to that used by Kho and Haines [17] to address convection of magnetic field by

heat flowing from the critical surface to the ablation surface has been tried. We find qualitative agreement,

also seeing amplification of the magnetic field injected at the low density edge of the density ramp (where

heating is applied) as it is subsequently convected with the heatflow up the density ramp.

4.6. Run times and memory usage

A list of CPU time, memory usage and the average number of nonlinear iterations required per time step,

for representative runs from each test is given in Table 1. Pertinent run parameters such as the time step, the

number of grid cells in each dimension, convergence tolerances, and whether the Rosenbluth coefficients are

treated explicitly or lagged in the nonlinear iteration, are also given there. A description of the hardware
and convergence tests can be found in the table caption. An important point to note is that all the tests

reported in Table 1 were run using IMPACT�s fast but memory inefficient mode. In this mode, each matrix

element effectively appears twice in memory. Initially they are stored in auxiliary arrays corresponding to G,
H ,M , and N in Eqs. (52) and (53) as they are calculated. They are then packed into compressed row format

which permits fast matrix multiplication. This later optimisation can be omitted, lowering the memory

overhead by nearly half, but then the matrix row and column indices of each element have to be recal-

culated �on the fly� every time a matrix multiplication operation is required.
5. Discussion

The test results in the previous section show that IMPACT can reproduce classical, transport phe-
nomena. TherTe �rðr2TeÞ non-local B-field generation test shows that it also works correctly beyond the
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classical limit and can resolve very small perturbations with good accuracy. At present PIC codes with

collisions would not be able to show this effect being unable to enter a sufficiently collisional regime and

being too noisy to resolve the perturbation of the distribution function well enough. Hybrid transport codes

cannot describe this type of non-local B-field generation either because they treat the background medium

non-kinetically. The simulation results presented in [8] show that the code in fact works far beyond the

classical limit; it works in a highly non-local, nonlinear regime where f0 becomes strongly distorted by

powerful, localized laser heating. The results of the B-field diffusion and temperature-perturbation decay

tests demonstrate that a large time step can be used.
We find that turning on the electron inertia term otf1 makes the iterative Bi-CGSTAB (or Bi-CG)

matrix solver converge to the solution in less iterations therefore increasing the overall speed of the

code. For instance, in the case of the B-field diffusion test-problem inclusion of electron inertia reduces

the total number of matrix solver iterations per time step (summed over the �22 nonlinear iterations)

from �700 to 600–650. Under the more extreme conditions considered in [8] electron inertia drastically

reduces the total number of matrix solver iterations (per time step) by a factor of 24 or more. The

reason why electron inertia speeds up the solution of the matrix is that it introduces an advective

character into the system. Without it, propagation of disturbances in f0 across the spatial grid is
completely diffusive. Spatial diffusion is extremely rapid for the high velocity part of f0 since the ef-

fective diffusion coefficient scales as Ds / v5. Introduction of advection helps to reduce the �connectivity�
between distant points on the spatial grid for the high velocity parts of f0 which in turn reduces the

number of matrix solver iterations required. When electron-inertia is turned on we find that the scheme

can become unstable if very cold and dense plasmas (i.e., dc > 1) and small system sizes (i.e., a few kn
long) are used.

We find that the algorithm conserves mass exactly as expected and that energy is conserved to OðDvÞ
with the Ohmic heating term in the f0 equation being the cause of energy non-conservation. Use of the
current constraint together with the implicit treatment of E completely overcomes the problems in main-

taining quasineutrality [16] encountered with previous VFP codes. In terms of transport the scheme is

OðDs2Þ accurate in the spatial cell size and either OðDvÞ or OðDv2Þ accurate in the velocity cell size for

centred and forward differencing of the Eovf0 term in the f1-equation, respectively. We have shown that in

general changing Dv without also changing Ds in the correct way (or vice versa) will not necessarily improve

the overall accuracy. The temporal accuracy of the scheme varies with physical effect. The local truncation

error for spatial diffusion is OðDtÞ while introduction of electron inertia results in spatial advection which is

OðDt2Þ accurate. Magnetic field growth/decay is OðDtÞ accurate at present. The tests reported here use
regular grids in x; y and v. Use of an irregular x-grid, for example, would generally be expected to result in a

deterioration of the accuracy of the OðDx2Þ parts of the scheme towards OðDxÞ. But the amount of OðDxÞ
error introduced in this case will depend on how abruptly Dxi varies from cell to cell. For smoothly

changing cell size, the extra OðDxÞ error should be negligible. Another effect of using an irregular spatial

grid is that, unless care is taken, it can be shown that ½r � ðr � BÞ�ij ¼ ½r � j�ij 6¼ 0 and therefore exact

quasineutrality can be lost.

A key area for future improvement is the Ohmic heating term. This could be made OðDv2Þ accurate or

differenced to ensure that there is no Ohmic heating when j ¼ 0. Improved preconditioning would reduce
the number of Bi-CGSTAB iterations needed to solve the sparse matrix equation. This would bring 2

benefits, namely reduction of the CPU time needed per time step and a decrease in the build up of

machine rounding errors. Epperlein�s linearisation of the Fokker–Planck collision operator [42] would

enable the scheme to converge in fewer nonlinear iterations when using large times steps but would

introduce a lot of extra non-zero matrix elements. Inclusion of e–e collisions in the f1 equation could be

achieved at practically no cost if treated explicitly. Implicit treatment would however mean that fnþ1
1

cannot be eliminated from the FD equation set and hence require reformulation of the sparse matrix plus

increase the number of non-zero matrix elements. Other avenues for improvement are: (1) inclusion of
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more B-field components which would require inclusion of Ez and fz too, and (2) adaptation for 2-D

cylindrical r; z geometry.

Though we have neglected the displacement current in this paper, it can easily be added since it does

not change the matrix sparsity pattern. Doing so would mean that otne would no longer be identically

zero and departures from strict quasineutrality are permissible. This would probably improve IM-

PACT�s ability to deal with very steep density gradients by allowing debye sheaths to form in these

regions. We note that the addition of displacement current to IMPACT is in progress. Ideally, ion

motion needs to be added since intense laser illumination leads to ion motion near the critical surface
(in long density scalelength plasmas) and deformation of the surface of ionized solid-targets (short

density scalelength, dense plasmas), both of which affect gross electron dynamics. Addition of hydro-

dynamics has been considered in 2-D VFP codes without B-fields before [16]. It should be possible to

include them in IMPACT too. Ionisation dynamics could be important depending on the details of the

system. For an intense laser pulse interacting with an initially unionized, thick (100�s of lm thick), high

Z foil target, field ionisation by the laser would be extremely rapid at the surface but collisional

ionisation within the depths of the target would follow (and affect) the penetration of a heat front

through the target. Because transport coefficients depend strongly on the ionisation state, ionisation
dynamics would be important here. Conversely, for a thin target or a low Z plasma, the plasma would

quickly be fully ionized throughout and ionisation dynamics would be unimportant. Ionisation dy-

namics (including recombination) have previously been added to 1-D VFP codes [50] and could in

principle be added to a code like IMPACT.

It should be remembered that IMPACT uses the diffusion approximation whereby f2 and higher

orders terms in the expansion of the electron distribution are neglected. The effect of f2 (and higher

orders) on the tests presented here would be negligible since the components of the Cartesian tensor

series are ordered as f0 � ��1f1 � ��2f2, etc., where � ¼ kn=L, and kn � L throughout. Investigation of
the effect of f2 on transport when B-fields are present and the scalelengths Ln, LT become similar to the

mean-free-path (so that the ordering f0 > jf1j > jf2j > � � � breaks down) requires inclusion of f2 into

IMPACT. We note that inclusion of f2 (and higher orders) was previously shown not to substantially

affect heat flow down steep temperature gradients in an unmagnetised plasma [14]. We expect this still

to hold in the magnetised case when LB the magnetic field scale length is large compared to k. On the

other hand, strong, short scale length magnetic variations perpendicular to a steep temperature gradient

would tend to laterally separate the hotter electrons travelling down the temperature gradient from the

colder electrons flowing up thus forming filaments. Once this occurs we anticipate that a proper de-
scription of energy transport would require the higher order terms neglected in the diffusion approxi-

mation.

Addition of f2 and even higher orders, together with displacement current would extend the code�s
range of applicability into the collisionless regime. When doing this relativistic effects would need to be

included too, but would actually be beneficial since it would restrict the speed of electron propagation to

below the speed of light. We note that we are in the process of developing a complementary 2-D VFP

code [51], designed to a tackle a different regime than IMPACT, that goes a lot of the way towards these

aims: an arbitrary number of spherical harmonics can be used in the expansion of f ; it is relativistically
correct, and includes displacement current. In essence, it will have the capabilities of a Vlasov code but

with electron collisions accurately incorporated. It is proving to be adept at dealing with fast electron

transport through solid density plasma, and combines favourable aspects of explicit PIC (fully kinetic)

and hybrid modelling (collisional background plasma) into one package. In contrast to IMPACT this

code is not fully implicit, but rather uses explicit differencing in the spatial directions, which is feasible

since relativistic effects are incorporated. It should be pointed out that IMPACT still remains better

suited to dealing with thermal transport in the presence of steep temperature and density gradients and

magnetic fields, though.
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6. Conclusions

In conclusion, we have described the first 2-D Vlasov–Fokker–Planck code to self-consistently in-

clude magnetic fields. It is designed to model electron transport in the presence of magnetic fields and

magnetic field generation in laser–plasma interactions but may also have application in other areas such

as astrophysical modelling. The code, called IMPACT, has the unique capability of being able to

describe these phenomena with all electrons being treated kinetically and therefore can access regimes/

conditions where fluid codes (based on classical, transport theory) and hybrid transport codes are not
valid. The code incorporates other innovations in addition to the inclusion of magnetic field. Its unique

differencing scheme treats both the electric field and the distribution function implicitly which makes the

code robust and able operate with a large time step. It also retains electron inertia which improves the

efficiency of the code while increasing the realism of the model at the same time. We have shown that

IMPACT can both accurately describe existing, classical, transport phenomena plus describe new

phenomena based on non-local effects too. Improvements have been identified which will extend the

range of applicability of the code.
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